Þegar hinar hraðfara nifteindir lenda á efnum þeim sem kjarnaofninn er gerður úr myndast geislavirk efni. Þó svo að kjarnasamrunahvarfið sjálft gefi ekki af sér geislavirkan úrgang þá verður kjarnasamrunaofninn smám saman geislavirkur og þarf að meðhöndla hann í samræmi við það. Milli kjarna verka fráhrindikraftar vegna jákvæðrar rafhleðslu þeirra. Kraftarnir sem halda kjarnanum saman eru mjög sterkir en skammdrægir (seiling þeirra er í sama stærðarþrepi og stærð atómkjarnans sem til dæmis miklu minni en frumeindin). Til að framkalla kjarnasamruna þurfa tví- og þrívetnisfrumeindirnar þess vegna að hafa nægilegan hraða þegar þær rekast á til að yfirvinna fráhrindikraftinn sem verkar vegna hleðslu kjarnans. Þar eð hreyfing samsvarar varma, þá er kjarnasamruni líklegri ef blanda tví- og þrívetnis (DT-eldsneyti) er við mjög hátt hitastig - milljónir stiga á Kelvin eða Celsius. Samruna tví- og þrívetnis má fá fram við mun lægra hitastig en mörg önnur hvörf sem til athugunar eru - 50 milljón kelvín. Við slíkan hita er eldsneytið (DT) full jónað gas, rafgas. Til að viðhalda þessum mikla hita má gasblandan ekki komast í snertingu við yfirborð eða veggi eða annað efni yfirleitt. Einkum hafa verið skoðaðar tvær leiðir til að mynda þetta háhita rafgas. Annars vegar er eldsneytið lokað af með segulsviðsþrýstingi í segulflöskum og hins vegar er öflugum leysipúlsum eða jónageislum skotið á storkið DT-eldsneyti. Í svokölluðum tokamak er eldsneytið DT-rafgas í lofttæmdum klefa sem er í laginu eins og hjólaslanga (torus). Rafgasinu er haldið frá veggjum klefans með sterku segulsviði sem er annars vegar framkallað með segulspólum sem umlykja hjólflötunginn og hins vegar spanað af rafstraum sem rennur um rafgasið. Kjarnaofnar af þessari gerð sem nú eru notaðir í tilraunum eða eru á teikniborðinu eru gríðarstórir (um 20 m í þvermál) og ofursterkt segulsvið þarf að mynda með stórum ofurleiðandi segulspólum. Þegar notað er storkið eldsneyti eru örsmáar kúlur sendar ört inn í lofttæmdan klefa og skotið á þær með mjög öflugum leysi- eða jónageisla. Yfirborð kúlunnar hitnar og rýkur í burtu, en við það fellur eldsneytið saman og þjappast í allt að hundraðfalt meiri þéttleika en vatn og hitnar að auki gríðarlega, í um 100 milljón kelvín. Það verður þá að rafgasi og kjarnasamruni breiðist út. Báðar þessar aðferðir eru enn á rannsóknarstigi. Bæði hafa mörg eðlisfræðileg fyrirbæri sem upp hafa komið reynst torskilin fræðilega og sífellt koma fram ný verkfræðileg vandamál sem varða hönnun og byggingu slíkra orkuvera. Það er því nokkuð víst að biðin eftir orku frá kjarnasamrunaorkuverum getur enn orðið nokkrir áratugir. Ekki verið mikið ritað um kjarnasamruna á íslensku. Bókin The Fusion Quest eftir T. K. Fowler gefur almennt yfirlit yfir sögu rannsókna á þessu sviði og þau fræðilegu, tæknilegu og pólitísku vandamál sem glíma þarf við. Ítarlegri og mun fræðilegri umfjöllun er að finna í grein J. Sheffield "The physics of magnetic fusion reactors" í Reviews of Modern Physics, 66, bls. 1015 - 1103 (1994). Mynd:
- hubblenet.com. Sótt 27. 6. 2011.