Sólin Sólin Rís 10:17 • sest 16:10 í Reykjavík
Tunglið Tunglið Rís 21:40 • Sest 15:54 í Reykjavík
Flóð Flóð Árdegis: 10:12 • Síðdegis: 22:46 í Reykjavík
Fjaran Fjara Árdegis: 03:46 • Síðdegis: 16:36 í Reykjavík
Sólin Sólin Rís 10:17 • sest 16:10 í Reykjavík
Tunglið Tunglið Rís 21:40 • Sest 15:54 í Reykjavík
Flóð Flóð Árdegis: 10:12 • Síðdegis: 22:46 í Reykjavík
Fjaran Fjara Árdegis: 03:46 • Síðdegis: 16:36 í Reykjavík
LeiðbeiningarTil baka

Sendu inn spurningu

Hér getur þú sent okkur nýjar spurningar um vísindaleg efni.

Hafðu spurninguna stutta og hnitmiðaða og sendu aðeins eina í einu. Einlægar og vandaðar spurningar um mikilvæg efni eru líklegastar til að kalla fram vönduð og greið svör. Ekki er víst að tími vinnist til að svara öllum spurningum.

Persónulegar upplýsingar um spyrjendur eru eingöngu notaðar í starfsemi vefsins, til dæmis til að svör verði við hæfi spyrjenda. Spurningum er ekki sinnt ef spyrjandi villir á sér heimildir eða segir ekki nægileg deili á sér.

Spurningum sem eru ekki á verksviði vefsins er eytt.

Að öðru leyti er hægt að spyrja Vísindavefinn um allt milli himins og jarðar!

=

Hvað er nanótækni?

Viðar Guðmundsson

Forskeytið nanó- vísar til hluta sem eru nokkrir nanómetrar að stærð. Einn nanómetri er einn milljarðasti úr metra. Þvermál vetnisatóms er einn tíundi úr nanómetra og fjarlægð milli atóma í kristalli er á bilinu 0,2-0,6 nanómetrar. Því er talað um að hlutir gerðir úr nokkrum atómum, til dæmis 10-10.000, séu á nanóskala. Flóknar sameindir eru því einnig í þessu stærðarþrepi.

Nanóvísindi og nanótækni fást við að kanna eiginleika þessara smáu kerfa sem oft eru sett saman atóm fyrir atóm á yfirborði efnis með oddi smugsjár (scanning tunnelling microscope). Grein á íslensku um smugsjá má finna í tímaritinu Verpli. Þjóðverjinn Gerd Binnig og Svisslendingurinn Heinrich Rohrer fengu Nóbelsverðlaunin í eðlisfræði árið 1986 fyrir uppgötvun smugsjárinnar og má af því sjá hversu nýja og mikilvæga hluti hér er um að ræða. Á síðasta áratug lærðu menn að nota smugsjá til þess að raða saman atómum í alls konar form á yfirborð málma. Frægar eru myndir af járnatómum raðað upp í hringi eða sporbauga á yfirborði kopars eins og sjá má á mynd 1.

Nanókristallar eru ræktaðir með aðferðum efnafræðinnar á ýmsan hátt eins og lesa má í Focus, vefhluta tímaritsins Physical Review. Til afreka nanóvísinda teljast líka knattkol, sem líta út eins og fótbolti gerður úr 60 kolefnisatómum, og kolrör eða pípur með þvermál 1,3 nanómetra. Kolrör má sjá á mynd 2. Um knattkol má lesa nánar á íslensku í grein Más Björgvinssonar í bókinni Undur veraldar sem kom út hjá Máli og menningu árið 1998.

Kolrörin geta verið leiðandi, einangrandi eða hálfleiðandi allt eftir því hvernig þau eru vafin upp. Því er augljóslega hægt að nota þau í rafrásir og smára eins og sýnt er á þessari síðu Eðlisfræðistofnunar Bandaríkjanna.

DNA-sameindin og kjarnsýrurnar sem hún er samsett úr hafa líka verið notaðar til þess að útbúa flókin rúmfræðileg form eins og kassa, krossa og margt fleira sem ekki kemur fyrir í lífkerfum. Rafeiginleikar þessara nanókerfa hafa verið kannaðir og má lesa um það á þessari síðu sem er einnig á vefsetri Eðlisfræðistofnunar Bandaríkjanna.

Þrátt fyrir þessar nýjungar verðum við að játa að erfitt er að segja fyrir um þróun og notkun nanókerfa á næstu árum. Við stöndum væntanlega þar í svipuðum sporum og þeir sem reyndu að segja fyrir um þróun tölvutækninnar snemma á fimmta áratug síðustu aldar, skömmu eftir uppgötvun hálfleiðarasmárans. Flest hefur gerst á annan hátt en þá var búist við.

Við getum þó búist við að nanótækni verði notuð við framleiðslu örsmárra tölvurása í framtíðinni. Nú þegar hefur tekist að útbúa einföld nanókerfi á „sjálfskipuleggjandi” hátt. Þannig er hægt að leggja nokkur lög atóma af vissum hálfleiðara ofan á annan og þegar ákveðinni þykkt er náð hleypur efri hálfleiðarinn saman í hóla eða þykkildi eins og vatnsdropar á bónuðum bíl. Sé hitastiginu breytt breytast hólarnir og taka á sig form sem líkjast kleinuhringjum. Miklar vonir eru því bundnar við að „einfaldar” aðferðir finnist til að útbúa nanókerfi; miklu einfaldari en þær sem koma við sögu í framleiðslu á tölvuflögum núna. Einnig gera menn sér vonir um betri nýtingu efna en í núverandi iðnaði.

Ýmsir draumóramenn hafa lýst fjálglega nanókafbátum, sem notaðir verði við hreinsun æða og viðgerðir í mannslíkamanum, og lífrænum sjálfskipuleggjandi nanóverksmiðjum sem geti framleitt næstum hvað sem er. Þetta eru óraunhæfar hugmyndir sem hrekja má með einföldum eðlisfræðilegum rökum. En engu að síður er ljóst að heillandi tímar eru framundan. Á átjándu öld gerbreytti iðnbyltingin umhverfi okkar og undir lok síðustu aldar hófust breytingar vegna upplýsingarbyltingarinnar sem við sjáum enn ekki fyrir endann á. Á þessari öld gæti vel farið svo að nanótæknibyltingin hefjist. Þá eins og nú mun vaxa þörfin fyrir eðlisfræðinga, efnafræðinga og líffræðinga menntaða á þessu sviði auk nýrra greina innan verkfræði. Margar tækniframfarir framtíðar munu byggjast á lífvísindum og eðlisvísindum og getu þeirra til að skilja og framleiða flókin kerfi úr einföldum byggingasteinum.

Þess má geta að frekari umfjöllun um nanótækni er að finna í septemberhefti Scientific American 2001.

Mynd 1 og mynd 2 eru fengnar á vefsetri Eðlisfræðistofnunar Bandaríkjanna, AIP.

Höfundur

Viðar Guðmundsson

prófessor í eðlisfræði við HÍ

Útgáfudagur

24.10.2001

Spyrjandi

Stefán Þór Hauksson

Tilvísun

Viðar Guðmundsson. „Hvað er nanótækni?“ Vísindavefurinn, 24. október 2001, sótt 21. nóvember 2024, https://visindavefur.is/svar.php?id=1922.

Viðar Guðmundsson. (2001, 24. október). Hvað er nanótækni? Vísindavefurinn. https://visindavefur.is/svar.php?id=1922

Viðar Guðmundsson. „Hvað er nanótækni?“ Vísindavefurinn. 24. okt. 2001. Vefsíða. 21. nóv. 2024. <https://visindavefur.is/svar.php?id=1922>.

Chicago | APA | MLA

Senda grein til vinar

=

Hvað er nanótækni?
Forskeytið nanó- vísar til hluta sem eru nokkrir nanómetrar að stærð. Einn nanómetri er einn milljarðasti úr metra. Þvermál vetnisatóms er einn tíundi úr nanómetra og fjarlægð milli atóma í kristalli er á bilinu 0,2-0,6 nanómetrar. Því er talað um að hlutir gerðir úr nokkrum atómum, til dæmis 10-10.000, séu á nanóskala. Flóknar sameindir eru því einnig í þessu stærðarþrepi.

Nanóvísindi og nanótækni fást við að kanna eiginleika þessara smáu kerfa sem oft eru sett saman atóm fyrir atóm á yfirborði efnis með oddi smugsjár (scanning tunnelling microscope). Grein á íslensku um smugsjá má finna í tímaritinu Verpli. Þjóðverjinn Gerd Binnig og Svisslendingurinn Heinrich Rohrer fengu Nóbelsverðlaunin í eðlisfræði árið 1986 fyrir uppgötvun smugsjárinnar og má af því sjá hversu nýja og mikilvæga hluti hér er um að ræða. Á síðasta áratug lærðu menn að nota smugsjá til þess að raða saman atómum í alls konar form á yfirborð málma. Frægar eru myndir af járnatómum raðað upp í hringi eða sporbauga á yfirborði kopars eins og sjá má á mynd 1.

Nanókristallar eru ræktaðir með aðferðum efnafræðinnar á ýmsan hátt eins og lesa má í Focus, vefhluta tímaritsins Physical Review. Til afreka nanóvísinda teljast líka knattkol, sem líta út eins og fótbolti gerður úr 60 kolefnisatómum, og kolrör eða pípur með þvermál 1,3 nanómetra. Kolrör má sjá á mynd 2. Um knattkol má lesa nánar á íslensku í grein Más Björgvinssonar í bókinni Undur veraldar sem kom út hjá Máli og menningu árið 1998.

Kolrörin geta verið leiðandi, einangrandi eða hálfleiðandi allt eftir því hvernig þau eru vafin upp. Því er augljóslega hægt að nota þau í rafrásir og smára eins og sýnt er á þessari síðu Eðlisfræðistofnunar Bandaríkjanna.

DNA-sameindin og kjarnsýrurnar sem hún er samsett úr hafa líka verið notaðar til þess að útbúa flókin rúmfræðileg form eins og kassa, krossa og margt fleira sem ekki kemur fyrir í lífkerfum. Rafeiginleikar þessara nanókerfa hafa verið kannaðir og má lesa um það á þessari síðu sem er einnig á vefsetri Eðlisfræðistofnunar Bandaríkjanna.

Þrátt fyrir þessar nýjungar verðum við að játa að erfitt er að segja fyrir um þróun og notkun nanókerfa á næstu árum. Við stöndum væntanlega þar í svipuðum sporum og þeir sem reyndu að segja fyrir um þróun tölvutækninnar snemma á fimmta áratug síðustu aldar, skömmu eftir uppgötvun hálfleiðarasmárans. Flest hefur gerst á annan hátt en þá var búist við.

Við getum þó búist við að nanótækni verði notuð við framleiðslu örsmárra tölvurása í framtíðinni. Nú þegar hefur tekist að útbúa einföld nanókerfi á „sjálfskipuleggjandi” hátt. Þannig er hægt að leggja nokkur lög atóma af vissum hálfleiðara ofan á annan og þegar ákveðinni þykkt er náð hleypur efri hálfleiðarinn saman í hóla eða þykkildi eins og vatnsdropar á bónuðum bíl. Sé hitastiginu breytt breytast hólarnir og taka á sig form sem líkjast kleinuhringjum. Miklar vonir eru því bundnar við að „einfaldar” aðferðir finnist til að útbúa nanókerfi; miklu einfaldari en þær sem koma við sögu í framleiðslu á tölvuflögum núna. Einnig gera menn sér vonir um betri nýtingu efna en í núverandi iðnaði.

Ýmsir draumóramenn hafa lýst fjálglega nanókafbátum, sem notaðir verði við hreinsun æða og viðgerðir í mannslíkamanum, og lífrænum sjálfskipuleggjandi nanóverksmiðjum sem geti framleitt næstum hvað sem er. Þetta eru óraunhæfar hugmyndir sem hrekja má með einföldum eðlisfræðilegum rökum. En engu að síður er ljóst að heillandi tímar eru framundan. Á átjándu öld gerbreytti iðnbyltingin umhverfi okkar og undir lok síðustu aldar hófust breytingar vegna upplýsingarbyltingarinnar sem við sjáum enn ekki fyrir endann á. Á þessari öld gæti vel farið svo að nanótæknibyltingin hefjist. Þá eins og nú mun vaxa þörfin fyrir eðlisfræðinga, efnafræðinga og líffræðinga menntaða á þessu sviði auk nýrra greina innan verkfræði. Margar tækniframfarir framtíðar munu byggjast á lífvísindum og eðlisvísindum og getu þeirra til að skilja og framleiða flókin kerfi úr einföldum byggingasteinum.

Þess má geta að frekari umfjöllun um nanótækni er að finna í septemberhefti Scientific American 2001.

Mynd 1 og mynd 2 eru fengnar á vefsetri Eðlisfræðistofnunar Bandaríkjanna, AIP.

...